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Abstrac:t-Under the action of an external force. a solid body B penetrates into .mother body. Body
B is assum~'d to be of an incompressible. viscoplastic. Bingham material. consisting of a solid core
surround~'l!by a lone of viscoplastic filIW. As a Iirst model. the problem is tre.lled one-dimensionally
in the sp.l\;e variable .\ as well as the time variable /.

Oy utililing Green's functions, the localion of the moving boundary .v(t), i.e. the boundary
between lhe region of viscopbslic n(IW and the core, is ellpresscd in terms of an inlegr;11 equation,
whidl may then be solved numerically.

The resulting numerical methud works well in practice. as illustr'lted by two ellamples.

I. FORMULATION OF TIlE PROULEM

A solid body B of width 211 penetr.. tes into another body under the action of an external
force. We assume that body B is ..n incompressible viscopl..stic Bingh..m body. that is, it
satisfies Bingham's law,

DJt*
r*(x*,t*)-ro = ±JL;;-;(x*,t*).

uX
(I)

where r* is the stress, rll the yield stress, Jt the coefficient of viscosity and u* the velocity in
the y-direetion. The movement is in the y-direction only and is assumed to be independent
of: and symmetric about the plane x* = H (see Fig. I). (The starred variables represent
the origimll units; we will replace them below by their nondimensional counterparts.)

Perhups it is ..ppropriate at this point to note thut the physical condition depicted here
is that of .. penetrated body consisting of bituminous material, e.g. asphult. While it is
well recognized that such un application is not the most desirable goal of the mechanics
community. nevertheless its solution will provide us with sufficient information and knowl­
edge which one may subsequently be able to use in order to extend the analysis of this
notoriously dimeult problem to also include other materials which are physically more
desirable. Moreover, such a solution will serve as a limit check for the complicated finite
clement codes presently available. Thus. the case ofan incompressible viscoplastic Bingham
m.lteri.ll is a logical fountainhead for detailed theoretical study.

Returning next to our present analysis. the body B is divided into two parts

Bj={x*:O<x*<s*(t*) or 2H-s*(t*)<x*<2HI.

B~ = {x*: .~*(t·) ~ x* ~ 2H -s*(t* )}.

t The work of this author was supported by the Mathematics Department of the University of Utah.
: The work of this iluthor WilS partially supported by NSF Grant No. DMS·8902122.
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•Fig. I. Geometrical conliguration.
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In 8. (respectively 8~) the tungentiul stress is lurger (respectively smuller) thun the yield
stress til' We cull 8, the :o"e (~rriscop/astic.f/OII'und 8~ the con',

In the zone of viscoplustic now, the velocity u* (x*, t*) s.ttislies the equution

(3)

where g* is the force per unit volume due to un external force acting in the y-direction and
jI is the density. Since the core is rigid, the velocity in it is

(4)

where it is ussumed that /I~(O) #- O.
Before going any further, let us nondimensionalize the probkm. We choose the half­

width H of the body 8 as the chamcteristic length scale, til as the chamcteristic stress und
tillH as the characteristic force per unit volume. The ehamcteristic time intervul T will be
specified later, separately for each application.

Thus, upon introducing the dimensionless variables

u = II*TIH,

t = t*IT,

x = x*IH,

9 = g*Hlto,

Bingham's Law (I) becomes

and eqn (3) turns into

I
t(x, I) -I = ± SIl,(X, t)

I S
u,(x, t) = RU,,(x, I) + i?g(t),

(5)

(6)

(7)
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R= J,lT'
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(8)

R is the Reynolds number, i.e. the ratio of inertial to viscous forces. Similarly, S represents
the ratio of external to viscous forces.

Due to symmetry, it is sufficient to consider eqn (7) in the domain 0 < x < set). On
the moving boundary s(l), the tangential stress is equal to the yield stress, so by Bingham's
Law

II.(S(/), I) = O.

Considering the forces on the core [see e.g. Rubinstein (1970)], we find

S S
tiu(l) = R.Q(/) - R( 1-5(1)

Since by (9)

(9)

( 10)

d
tiu(l) = dl [11(5(1), t») = II, (5(1), 1).V(l) +11,(5(/), I) = 11,(5(1), I), (II)

eqn (10) can be written as

s S
1I,(S(t), I) = Rg(l) - R( 1--5(1»' ( 12)

Assuming continuity of the solution and all its derivatives up to the bound'lry and
letting x / set) in (7), we obtain

I S
1I,(.f(I), t) = R II"(s(t), I) + Rg(/)·

Upon comparison with (12), we must have

We assume we are given the boundary and initial values

11(0, I) = f(l),

II(X, 0) = 4>(x),

5(0) = h, 0 < h < I.

To make (9), (14) and (15) consistent, we must require that

4>(0) = f(O),

4>'(h) = 0,

S
4>"(h) = - I-h'

( 13)

( 14)

( 15)

( 16)
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Notice that in this analysis we have for simplicity assumed that 5(0) > o. The case
5(0) = 0 requires some special mathematical rigor which for the sake of brevity we will
omit.

Perhaps it is appropriate at this point to comment on the difference between the present
problem and the classical Stefan problem. For the classical Stefan problem. the location of
the moving boundary x = s(t) is governed by the velocity II as well as its derivative with
respect to x. whereas in the present problem it is also governed by the time derivative. i.e.
an additional constraint which makes the solution even more difficult.

Before engaging in the details of the construction of the solution. let us summarize the
problem we are trying to solve. Given a time Tma , > O. we are looking for a pair offunctions
lI(X. 1). set) so that

• set) is Lipschitz continuous on (0. Tmil,l:
• II and /I, are continuous for 0 ~ x ~ .1'( t). 0 ~ t ~ Tm.,,:

• /I". II, are continuous in 0 ~ x ~ s(t) forO < t < Tm.,,:

• II satisfies the equation

I S
1I/(x. t) = R/I,,(x. 1) + Ry(t)

in 0 < x < s(t). 0 < t ~ 1'111.,,:
• on the moving boundary set). II satisfies

s S
1I/(s(t). t) = R·CJ(t) - R( I -s(t))'

/I, (.I'(t). t) = O.

( 17)

1I,,(.I'(t). t) =
..,.

I -.I'(t)'
( IX)

for 0 < t ~ 1'111.,,:
• II and .I' satisfy the boundary and initial conditions

s(O) = h. 0 < h < I.

/I(X.O) = ep(x).

lI(O. t) = f(t).

with compatibility conditions

ep(O) = flO).
ej/(h) = O.

S
ep"(h) = - I~=h.

( 19)

(20)

This problem has been discussed before by the authors in Ang et al. (1989). A related
problem is solved by similar methods in Ang et al. (1988).

2. REFORMULATION OF THE PROBLEM

We shall reformulate the problem as an integral equation in r(t) ~ ,\'(t). which can be
solved by successive approximation. using the contraction principle. For this purpose we
shall require some regularity conditions on the initial and boundary data:

• f(t) is continuous. g(t) is C I on t ~ 0:
• eMx) is C~ on (O.h). and the left-hand derivative e/J"(h) exists.
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Put r = u,. The equations for r(x. t) can be derived from the corresponding equations
for u by differentiation. Thus. from (7).

Differentiating (9) with respect to t gives

do= ;,it [lI,(s(t). t)] = lI,,(s(t). t).~(t)+ l',(s(t). t).

thus by (\4)

s(t)I" (s(t). t) =S~I~-)'-s(t

Equation (12) becomes simply

S S
r(s(t) t) =-q(t) - ._-_ ..

• R' R(I-s(t»

Eqmttions (7) at f = 0 and (15) give

I S <fcf
r(x.O) = lI,(x.O) = R1f>"(X)+ R.lI(O) = t/J(x).

while the boundary condition at x =0 is

1'(0. f) =I( f).

The compatibility conditions are

/(0) = t/J(O)

s S
t/J(h) = g(O) - .

R' R(I-h)'

Summing up the above equations. I' must satisfy

I S
l',(x, f) = R !',,(X, f) + R,ti(t).

S S
I'(s(t), f) = RfJ(f) - R(I-S(f»'

.\'(f)
r,(s(l),f)=SI •

-s(t)

r(x.O) = "'(x).

r(O,f) =/(1)•

•1. h _ S _ s
'1'( ) - R·q(O) R(I-h)'

/(0) = "'(0).

Assume for now that s(t) is C I on [0.11]. t

t We will justify this assumption later.

(21 )

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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Let k = R I ~. We define the Green's functions

. . k I (k~(X-~)~)
K(x.t: .;.r) = 2j~ ::/t~r exp - -4(t-":::-r)" .

G(x.t: ~.r) = K(x.t: ~.r)-K(x.t: -~.r).

N(:u: ~.r) = K(x.t: ~.r)+K(x.t: -~.r).

0< x < s(t). 0 < ~ < s(r). 0 < r < t.

(29)

(30)

We will use the following properties. which are easy to verify

G,.; = k~Nt

G, = -N;

N(x./: ~.t) = o. (31)

Thus. let r(~. r. s(r) be a solution of (28) with (x. t) replaced by (~. r). Integrating the
identity

(32)

over the region [(~. r) : 0 ~ ~ ~ s( r).I: ~ r ~ t -1:]-. applying Green's identity and letting
I: -. O. we obtain

f" If'r(x.t) = 1"(~)G(x.t:~.O)d~- R l'o(r)GJ\'.t;s(r).r)dr
I) II

I fi fi+ l' \ (s(r). r)G (x. t : s( r). r) dr + I'o( r)G (x. t: s(r). r).~(r) dr
Roo

If' S fi f"n+ l(r)G;C\,. t: O. r) dr + R G(x. t: ~. r) d~.'i(r) dr.
Roo 0

where we have put

1'0(/) = ds(t).t)

and h,lve used the identity

d~=.~(r)dr on s(t).

Take the x-derivative of both sides of (33) to get

fl> If'l'Ax, t) = 0 "'WG, (x. t; e, 0) de - R 0 eo(r)Gdx• t; s(r). r) dr

If' f'+- e ,.(s(r), r)G ,(x. t : s(r). r) dr + l'o(r)G ,(x. t: s(r). r).5( r) dr
Roo

I fl S fi J'ln+ -- /(r)G,.;(x. t: O. r) dr + R" G ,.(x. t: ~. r) d~.q(r) dr.
R II 0 0

(33)

(34)

(35)

(36)
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Integrate the various terms on the right-hand side by parts

[I> tj/(~)G,(x.t; ~,O)d~ = -il> tj/(~)NJx.t;~.O)d~
Jo 0

1:21

=tj/(O)N(x. t; 0.0) - tj/(b)N(x.t: b. 0)

+ [I> tj/'(~)N(x.t; e.O)d~. (37)Jil

If'- R Jo ('o(r)G,;{x.t;s(r).r)dr

= - fl{'o(r)N,(x.t:s(r).r)dr
Jo

= - r1'0(r){~(N(x.t;S(r).r)]-N~(X,t:S(r).r)r(r)}dr

= l'o(O)N(x. t; h, 0)+il

(;o(r)N(x. t: s(r). T) dr
u

+ f'l'u(r)N,(x.t:S(r),T)r(r)dr (38)
Ju

If' i'R
./(r)G\~(x,/:O,r)dr = !(T)N,(x.t;O,r)dr

(J 0

= -/(O)N(x,t;O.O)- f'!(r)N(X,t;o.r)dr, (39)
Ju

= -N(x.t:.s(r).r)+N(x.t;O.t).

so

Sf' f,cn Sf'
R

G,(X./:~.t)d~g(r)dt = - R" !i(t)[N(x.t:.~(t).r)-N(x.t:O.r):dr.
II II II

We end up with

(,«x. t) = fl> tj/' (e)N(x. t; e. 0) de + [I t;o(t)N(x. t; Set). t) dt
Jo Jo

I f' f' .+ RJo (',(SeT). r)G,(x. t; Set). t) dr- Jo !(T)N(x. t; O. r) dt

Sf'- R 0 g(tH N(x. t; s(r). t) - N(x. t; O. t)} dt.

Now. let x / set) and usc a lemma from Friedman (1964),

SAS 28:1-1

(40)

(41 )

(42)
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Lemma 2.1 (Friedman). Let pet) (0 ~ t ~ a) be a continuous function and let s(t)
(0 ~ t ~ a) satisfy a Lipschitz condition. Then, for every 0 < t ~ a.

(~ I' k~ I' [(~ ]_lim,·· p(r)K(x,t:s(r),r)dt==~·p(t)+ perl ~.. K(x.t:s(r).r). dr.
'( \lO-O(,..\" (} .... 0 (X \,,:;>\10

where K is as in (29).
This gives

1\(S(t), t) == il> !fir(~)N (s(t), t: ~. 0) d~+1' l'u(r)N(s(t). t: s(r). r) dr
n n

I (,
+ !l'As(t), t)+ RJo t',(s(r). r)G,(s(l). t: s(r), r) cl,

-It /(r)N(s(t), t; O. r) dt
u

S ('- "I, g(r)iN(s(f),t;s(r),r)-N(s(t),t:O.r)}clr.
R .. u

or

k, (s(t), t) = II> !fir(~)N(s(t), t: ¢' 0) d~+I' t'o(r)N(s(t). f; s( r), t) dr
o .)

I (,
+ R In I\(S(,), r)G.(.~(t), f; .I"(r), r) dt

- I'/(t)N(.I"(/), f; 0, t) dt
u

Sf'- g(tH N(s(t), /: S(t), r) - N(s(t), t: 0, rn dt.
R fl

Define

so that

.I'(t) =h+ ('r(r)dt.
JII

and recall (23) and (24)

r(f)
I\(S(I), t) = S I ()" ,

-sf

S S
('o(t) = --g(t)- _ .....

R' R(l-s(t»

S Sr(t)
(\ (f) =-g(l)- '.-" .;.

o R' R(l-s(t»'

The left-hand side of (45) equals

S r(t)
k.(s(t), t) :::: 2 f':-'s(t) '

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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while the right-hand side becomes

rh

""(~)N(s(t),t; ~,O)d~
Jo

Sf' [ ret) ]+ - g(t)- , N(s(t),t;s(t),t)dt
R 0 (I-s(t»"

Sf'[ ret) ]+- ---- G,(s(t),t;s(t),t)dt
R 0 I-s(t»

-f' l(t)N(s(t), t; 0, t) dt
o

Sf'- - get) (N(s(t), t; s(t), t) - N(s(t), t; 0, t)} dt.
R 0

After some minor simplifications. we end up with

.,
ret) = ;.(l-s(t»B(r(t»,

where

B(r(t» =f ""(~)N(s(t). t;~, 0) d~ - ~f (I ~~~~»ZN(s(t). t; s(t), t) dt

Sf' ret)+ R I .( G,(s(t),t;s(t),t)dr
o -.~ r)

f,[., S ]
- 0 }(r)- Ri/(t) N(s(t).t;O.r)dt.

123

(50)

(51 )

(52)

It can be shown that there exist AI > 0 and n > 0 such that the right-hand side of (51)
defines a contraction on B,,(O, M), the closed ball of radius M, center 0 in the space of
continuous functions on [0. t1].

Thus. for small values of t. iteration of (51) will produce a solution r(t). On the
numerical experiments. no limit on the values of t was found; the method converged in all
cases.) 1n addition to providing the basis for a numerical method, this justifies the smooth­
ness assumptions on .I'(t) made earlier.

We will use eqn (51) as the basis for a numerical method, similar to the one used in
Ang et al. (1988).

3. NUMERICAL RESULTS

Formula (51) forms the basis of a numerical method as follows.
let t" i = 0, 1,2, ... , be equally spaced points in the t direction. Given a guess for r(f),

we can calculate a guess for set) from (47). then B(r (t» from (52), and finally an updated
r(f) from (51).

Once set) is known. we can calculate II,(X, t) for any value of (x, t) from

U,(X, t) = f.h t/J'(~)N(x, t; ~, 0) d~ - R~ f.'-II ( ) N(x, t; s(r), r) dr
o 0 -st

(53)
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This equation is similar to eqn (42) and derived the same way. Finally. we can calculate
U(X./) from

U(X,t) =/(t)+f< u«~./)d~.
IJ

As a check. u(s(l), t) can also be calculated from

A value for r(O) is provided by the third formula in (28)

r(O) = ~(I-b)"/(b).

(54)

(55)

(56)

The first iteration starts out with this value for r(lo) and r(/.).

At the ith iteration, we only used values of rat 10•... • I i • since good guesses of r(/) for
large I were not available. For the (i+ I) iteration. we added a new point r(l,+ I). with initial
guess

(57)

Only r(l;) had to be calculated at the ith step, since the previous values of r were already
known and not alTected by later values.

Except ne.1r the start, four to five iterations per point. combined with extrapolation.
were suflicient for convergence.

We used free spline interpolation to calculate r, s at intermediate points, and routines
from QUADPACK for numerical integration. Note that the second and third integrals in
(52) are singular. but the type of singularity [(I - r) I 1] is known exactly and can be easily
handled.

As an aid in selecting appropriate test problems, we note the existence of special steady
flow solutions of the form

. S [h' h 'I/(X,t) =111+ 2911 --(x- )-]. (58)

where/(I) =/11. g(/) = gil. s(l) = hand h = 1- l/g II .
In all numerical experiments, we used S = R = IJ(t) =O.

Example I. We started with the steady flow solution corresponding to g(/) =2. that
is, h = 0.5, cjJ(x) = 0.25-(x-0.25)1. We then set g(t) =0, corresponding to an abrupt
vanishing of the external force. Thus. the motion is dominated by viscous forces.

Figure 2 shows plots of the moving boundary 5(1), the core velocity uu(l) and of the
velocity II(X. t) and the stress .(x, I) in the zone of viscoplastic flow for various fixed values
of x and t. We used a small time step of 0.00 I to produce smooth curves; the results for
larger time steps are in excellent agreement. As one would expect. the core expands rapidly
until it reaches the boundary x = O.

If g(l) is taken to be 2 initially. then dropped to 0, we obtain time-shifted versions of
the same curves. This indicates that the method can handle discontinuous external forces
easily. The last integral in (52). must. ofcourse. be modified to account for the delta function
behavior of9(/).

Example 2. We used an external force

g(t) = 2[1 - ~il e -'l, (59)
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Moving Boundary
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Fig. 2a. Example I : Moving boundary.
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Fig, 2<:. Example 1: Velocity in flow lone for I =0 to t =0.14 in steps of 0.02,
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Stress Profiles for fi xe"
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Moving Boundary
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Fig. Ja. Example 2: Moving boundary.
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Fig. Jc. Example 2: Velocity in flow lOne for 1= 0 to 1= 3.5 in steps orO.5.
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Stress Profiil's for fix .. (1
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Fig. 3d. Ellample :!: Stress in flow lOne for 1 = 0 to 1 =' 3.5 in sleps of 0.5.
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Fig. 3e. Ellample 2 : Vclo~ity in flow 7.one for x = 0 to .\" =' 0.4 in sleps of 0.1.
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hg. Jf. ElI<lmple 2: Stress in flow ?One for.\" = (J 10 .r = 0.4 in sleps of (J.t.



and initial conditions corresponding to the steady state for .C/ll = 1.0101. ... The initial
location of the moving boundary is h = 0.0 I. very close to O. (The case h = tl needs furtha
investigation. as previously noted.)

The external force g(t) increases rapidly to a limiting value of 2. so \\c would expect
the moving boundary to approach the \alue 0.5. The curves in Fig. .3 wcre gcnerated with
a time step of 0.025.
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